Nonvanishing of Algebraic Entropy for Geometrically Finite Groups of Isometries of Hadamard Manifolds

نویسندگان

  • Roger C. Alperin
  • Gennady A. Noskov
چکیده

We prove that any nonelementary geometrically finite group of isometries of a pinched Hadamard manifold has nonzero algebraic entropy in the sense of M. Gromov. In other words it has uniform exponential growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform growth of groups acting on Cartan-Hadamard spaces

We say that Γ has uniform exponential growth if Ent Γ > 0. In [11], remarque 5.12, M. Gromov raised the question whether exponential growth always implies uniform exponential growth. The answer is negative, indeed, in [14] J.S. Wilson gave examples of finitely generated groups of exponential growth and non uniform exponential growth. Nevertheless, exponential growth implies uniform exponential ...

متن کامل

Geometric Finiteness in Negatively Pinched Hadamard Manifolds

In this paper, we generalize Bonahon’s characterization of geometrically infinite torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete torsionfree subgroups Γ of isometries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to prove that every such geometrically infinite isometry subgroup Γ has a set of nonconical limit points with cardi...

متن کامل

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

Tameness on the boundary and Ahlfors’ measure conjecture

Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The fir...

متن کامل

Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds

Let X be a Hadamard manifold and Γ ⊂ Isom(X) a discrete group of isometries which contains an axial isometry without invariant flat half plane. We study the behavior of conformal densities on the limit set of Γ in order to derive a new asymptotic estimate for the growth rate of closed geodesics in not necessarily compact or finite volume manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAC

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005