Nonvanishing of Algebraic Entropy for Geometrically Finite Groups of Isometries of Hadamard Manifolds
نویسندگان
چکیده
We prove that any nonelementary geometrically finite group of isometries of a pinched Hadamard manifold has nonzero algebraic entropy in the sense of M. Gromov. In other words it has uniform exponential growth.
منابع مشابه
Uniform growth of groups acting on Cartan-Hadamard spaces
We say that Γ has uniform exponential growth if Ent Γ > 0. In [11], remarque 5.12, M. Gromov raised the question whether exponential growth always implies uniform exponential growth. The answer is negative, indeed, in [14] J.S. Wilson gave examples of finitely generated groups of exponential growth and non uniform exponential growth. Nevertheless, exponential growth implies uniform exponential ...
متن کاملGeometric Finiteness in Negatively Pinched Hadamard Manifolds
In this paper, we generalize Bonahon’s characterization of geometrically infinite torsion-free discrete subgroups of PSL(2,C) to geometrically infinite discrete torsionfree subgroups Γ of isometries of negatively pinched Hadamard manifolds X. We then generalize a theorem of Bishop to prove that every such geometrically infinite isometry subgroup Γ has a set of nonconical limit points with cardi...
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملTameness on the boundary and Ahlfors’ measure conjecture
Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The fir...
متن کاملAsymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds
Let X be a Hadamard manifold and Γ ⊂ Isom(X) a discrete group of isometries which contains an axial isometry without invariant flat half plane. We study the behavior of conformal densities on the limit set of Γ in order to derive a new asymptotic estimate for the growth rate of closed geodesics in not necessarily compact or finite volume manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAC
دوره 15 شماره
صفحات -
تاریخ انتشار 2005